3.513 \(\int \frac{\cot (e+f x)}{\sqrt{a+b \sin ^2(e+f x)}} \, dx\)

Optimal. Leaf size=33 \[ -\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \sin ^2(e+f x)}}{\sqrt{a}}\right )}{\sqrt{a} f} \]

[Out]

-(ArcTanh[Sqrt[a + b*Sin[e + f*x]^2]/Sqrt[a]]/(Sqrt[a]*f))

________________________________________________________________________________________

Rubi [A]  time = 0.0638331, antiderivative size = 33, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.13, Rules used = {3194, 63, 208} \[ -\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \sin ^2(e+f x)}}{\sqrt{a}}\right )}{\sqrt{a} f} \]

Antiderivative was successfully verified.

[In]

Int[Cot[e + f*x]/Sqrt[a + b*Sin[e + f*x]^2],x]

[Out]

-(ArcTanh[Sqrt[a + b*Sin[e + f*x]^2]/Sqrt[a]]/(Sqrt[a]*f))

Rule 3194

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With[{ff = Free
Factors[Sin[e + f*x]^2, x]}, Dist[ff^((m + 1)/2)/(2*f), Subst[Int[(x^((m - 1)/2)*(a + b*ff*x)^p)/(1 - ff*x)^((
m + 1)/2), x], x, Sin[e + f*x]^2/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\cot (e+f x)}{\sqrt{a+b \sin ^2(e+f x)}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x}} \, dx,x,\sin ^2(e+f x)\right )}{2 f}\\ &=\frac{\operatorname{Subst}\left (\int \frac{1}{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \sin ^2(e+f x)}\right )}{b f}\\ &=-\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \sin ^2(e+f x)}}{\sqrt{a}}\right )}{\sqrt{a} f}\\ \end{align*}

Mathematica [A]  time = 0.0362475, size = 33, normalized size = 1. \[ -\frac{\tanh ^{-1}\left (\frac{\sqrt{a+b \sin ^2(e+f x)}}{\sqrt{a}}\right )}{\sqrt{a} f} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[e + f*x]/Sqrt[a + b*Sin[e + f*x]^2],x]

[Out]

-(ArcTanh[Sqrt[a + b*Sin[e + f*x]^2]/Sqrt[a]]/(Sqrt[a]*f))

________________________________________________________________________________________

Maple [A]  time = 0.762, size = 42, normalized size = 1.3 \begin{align*} -{\frac{1}{f}\ln \left ({\frac{1}{\sin \left ( fx+e \right ) } \left ( 2\,a+2\,\sqrt{a}\sqrt{a+b \left ( \sin \left ( fx+e \right ) \right ) ^{2}} \right ) } \right ){\frac{1}{\sqrt{a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(f*x+e)/(a+b*sin(f*x+e)^2)^(1/2),x)

[Out]

-1/a^(1/2)*ln((2*a+2*a^(1/2)*(a+b*sin(f*x+e)^2)^(1/2))/sin(f*x+e))/f

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)/(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 2.52384, size = 255, normalized size = 7.73 \begin{align*} \left [\frac{\log \left (\frac{2 \,{\left (b \cos \left (f x + e\right )^{2} + 2 \, \sqrt{-b \cos \left (f x + e\right )^{2} + a + b} \sqrt{a} - 2 \, a - b\right )}}{\cos \left (f x + e\right )^{2} - 1}\right )}{2 \, \sqrt{a} f}, \frac{\sqrt{-a} \arctan \left (\frac{\sqrt{-b \cos \left (f x + e\right )^{2} + a + b} \sqrt{-a}}{a}\right )}{a f}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)/(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/2*log(2*(b*cos(f*x + e)^2 + 2*sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(a) - 2*a - b)/(cos(f*x + e)^2 - 1))/(sqr
t(a)*f), sqrt(-a)*arctan(sqrt(-b*cos(f*x + e)^2 + a + b)*sqrt(-a)/a)/(a*f)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cot{\left (e + f x \right )}}{\sqrt{a + b \sin ^{2}{\left (e + f x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)/(a+b*sin(f*x+e)**2)**(1/2),x)

[Out]

Integral(cot(e + f*x)/sqrt(a + b*sin(e + f*x)**2), x)

________________________________________________________________________________________

Giac [A]  time = 1.09399, size = 42, normalized size = 1.27 \begin{align*} \frac{\arctan \left (\frac{\sqrt{b \sin \left (f x + e\right )^{2} + a}}{\sqrt{-a}}\right )}{\sqrt{-a} f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)/(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

arctan(sqrt(b*sin(f*x + e)^2 + a)/sqrt(-a))/(sqrt(-a)*f)